

Better Buildings Residential Network Peer Exchange Call Series

Earth Day Special: Electrification, Batteries, Storage & Residential Efficiency

April 22, 2021

Agenda and Ground Rules

- Agenda Review and Ground Rules
- Opening Poll
- Residential Network Overview and Upcoming Call Schedule
- Featured Speakers
 - Anne Evens, CEO, Elevate Energy
 - Chris Bilby, Research & Programs Engineer, Holy Cross Energy
 - Tien Duong, Sr. Technical Advisor, DOE Vehicle Technologies Office
- Open Discussion
- Closing Poll and Announcements

Ground Rules:

- 1. Sales of services and commercial messages are not appropriate during Peer Exchange Calls.
- 2. Calls are a safe place for discussion; **please do not attribute information to individuals** on the call.

The views expressed by speakers are their own, and do not reflect those of the Dept. of Energy.

Better Buildings Residential Network

Join the Network

Member Benefits:

- Recognition in media and publications
- Speaking opportunities
- Updates on latest trends
- Voluntary member initiatives
- One-on-One brainstorming conversations

Commitment:

Members only need to provide one number: their organization's number of residential energy upgrades per year, or equivalent.

Upcoming Calls (2nd & 4th Thursdays):

- May 13: Low Income, Market Rate Residential Efficiency: Reaching the Hard to Reach
- May 27: Decarbonization and Residential Buildings
- Jun 10: Environmental Justice and Residential Energy Efficiency

Peer Exchange Call summaries are posted on the Better Buildings website a few weeks after the call

For more information or to join, for no cost, email bbresidentialnetwork@ee.doe.gov, or go to energy.gov/eere/bbrn & click Join

Anne Evens Elevate Energy

Equitable Building Electrification

DOE Peer Exchange April 22, 2021

Agenda

- Background: Elevate approach to Equitable Building Electrification
- Electrification pilot project
 - Property background
 - Energy Efficiency
 - Electrification
 - Rooftop Solar and First Year Utility Costs
 - Demand Response

Background – The Problem

- In order to have a chance of combatting the climate crisis, we need to eliminate fossil fuel use in the next one to two decades.
- Burning fossil fuels—typically oil or gas—to provide heating, cooling, and hot
 water in buildings can be a significant source of air pollution and greenhouse gas
 emissions.
- Lower income residents, renters, seniors, and other vulnerable groups are more likely to:
 - live in older, existing buildings,
 - disproportionally experience the effects of climate change, and
 - be left behind in climate mitigation efforts.

Background – The Solution

- Elevate seeks to invest capital resources into nonprofit-owned affordable housing in to end the on-site combustion of fossil fuels in buildings.
- The overall goal, shared by our funder, is to equitably electrify buildings and reduce carbon emissions to avert the worst impacts of climate change.
- Additionally, we strive to reduce utility costs, add central cooling, and improve indoor air quality.
- Our vision: affordable housing should be high quality and low-carbon, and we need to move as quickly as possible to combat the climate crisis.

Four Pillars of Decarbonizing Buildings

Elevate Research and Demonstration Projects

- Single family homes. US Department of Energy Advanced Buildings Construction Initiative. The goal is to assess the feasibility of a 50% energy reduction in Chicago's single family housing stock via combination of deep energy improvements and electrification.
 Pending funding in year 2 (June 2021), we will pilot measure packages in several home types (pre 1942 frame and brick, etc)
- Multifamily homes. Building Electrification Pilot provides wholebuilding electrification retrofits for affordable nonprofit-owned housing. Demonstration projects are underway in Chicago, Madison, and Detroit and will be completed by fall 2021.

Project Background – Chicago Multifamily Property

- 3-building property totaling 44 units on Northwest side of Chicago.
- It is a masonry courtyard-style building, which is typical of the pre-War vintage.
- Of the 44 units at La Paz Place, 31 are affordable to families at 50% Area Median Income (AMI) or \$44,550, and 13 are affordable at 30% AMI (\$26,730).
- Provides housing development and preservation, economic empowerment, leadership development, and tenant organizing.

Energy Efficiency Strategies

- In 2013, all 3 properties upgraded their air sealing and insulation of roof cavities/attics
- In 2015-2016, all 3 properties installed aerators and showerheads
- Similar energy performance to the national median
- Energy costs are relatively similar

Electrification Strategies

- Upgrade all building equipment and systems that use natural gas:
 - Space Heating → heat pumps
 - Water Heating → heat pumps
 - Appliances (stoves, clothes dryers) → allelectric
- Upgrade electrical service to withstand new/added electrical loads, including additional cooling (if needed)

Electrification Strategies Heat Pump Technology – Space & Water Heating

Proposed Space Heating & Cooling Technology

- High-efficiency individual heat pumps for each unit provide heating in winter and cooling in summer
- Would not trigger major electrical upgrades (except for 4-bedroom units)
- LG technology shown, also available from Daikin, Mitsubishi and others
- Average COP of 200-300% versus 70-80% efficiency furnaces
- Reduces total energy 50-60%

Proposed Water Heating Technology

Energy Performance:

- Average COP of 2.5, means 250% of the heat is moved per unit of input energy
- Provides "free" basement cooling in summer

Installation/Maintenance:

- Simplified installation, no flues or additional roof/wall penetrations
- Typical life 5 years longer than traditional gas heater

Heat Pump Hot Water Heater

Storage Tank behind

Proposed Stoves & Laundry Equipment

- Stoves drive tenant savings because they are the 'last mile' to eliminate tenant gas service, thereby eliminating the high fixed charges.
- Ceramic flattop stoves and heat pump dryers are the recommended technologies
- Stoves would require in-unit electrical work to run conduit from panels to kitchens and coordination with tenants
- Impacts to utility costs are minimal compared to HVAC and hot water

Heat Pump Dryer

Electric Stove/Oven

Solar & Demand Response

- The property is applying for funding via Illinois Solar for All
- Electrification will save 3% on annual utility costs, and the addition of solar brings total cost savings to 15% annually
- Storage and demand response have additional cost and emissions savings potential, and are being explored with the building owner

What have we learned?

- Electrification must be integrated with the other pillars of building decarb, especially energy efficiency
- Affordable owners are focused on their tenants, their operating costs, not widgets or technology
- Added cooling, resiliency, and health improvements are huge selling points
- Policy is needed to fill gaps and address first costs
- Diverse contractors need help to pivot to electrification

Contact information

- Margaret Garascia
- Margaret.Garascia
 @ElevateEnergy.org
- 773-922-3020
- ElevateNP.org
- info@ElevateEnergy.org
- @ElevateNPOrg
- 🕥 @ElevateNPO

Chris Bilby Holy Cross Energy

Our "Journey to 100%"

These actions will allow HCE to achieve its vision of

100% carbon-free power supply by 2030

Carbon-neutral or better across the enterprise by 2035

in a way that does not sacrifice affordability, safety, or reliability for the sake of sustainability

- Energy Efficiency: obtain an additional 0.25% per year of energy efficiency improvements
- Cleaner Wholesale Power Supply: incorporate new, clean, dispatchable resources into HCE's power supply mix
- Local Clean Energy Resources: continue our existing agreements for energy from local biomass, hydro, solar, and coal mine methane projects
- Distributed Energy Resources: support installation of at least 2 MW per year of new rooftop solar systems and 1 MW of BTM storage per year
- Smart Electric: encourage the expanded use of electricity for transportation, building heating and cooling, and industrial processes

Progress to Date

New Resources Under Contract:

Eastern Colorado

100 MW wind 30 MW solar

HCE Service Area

5 MW solar

4.9 MW hydro

4.5 MW/15 MWh solar+storage

10 MW/20 MWh solar+storage

10 MW/20 MWh solar+storage

Fostering DERs for Grid Flexibility

Basalt Vista House Project

An all-electric affordable housing project to demonstrate the value of DER to consumers and the grid.

Distribution Flexibility Tariff (DFT)

Created an on-bill credit to allow HCE to manage behind-the-meter DER assets.

Peak Time Payback & Green Up

Launched programs that pay members for a measured reduction or increase in usage compared with their baseline during a limited number of demand response event hours.

Power+

Combines DER Service Agreement and DFT to offer members a new resilience option using Battery Energy Storage Systems with a 5MW goal.

2018

2019

2019

2020

2021

2018

2018

Charge at Home

Free EV home charger and an optional EVSE Rider that allow on-bill payments for the installation cost.

18 2019

Time of Day Rate

An optional rate structure to encourage load shifting. Tailored for DCFC and Transit.

- 24c/kWh on-peak (4-9 pm)
 - 6c/kWh off-peak

DER Service Agreement

Expanded the EVSE Rider to allow for a broader application of the tariff-based (service agreement) financing model.

Camus Energy

HCE begins effort on a Zero Carbon Grid Orchestration combining system visibility with DER signaling.

"Basalt Vista" Affordable Housing Project

- · Habitat for Humanity, Pitkin County, Basalt School District
- 27 homes for teachers and local service workers
- Designed net-zero energy with all electric construction
- · Adjacent to Lake Christine Fire affected area
- Cost-shared partnership with NREL and DOE Office of Electricity
- Demonstrate value of DERs to consumer *and* grid

Four homes with controllable loads

- 8kW rooftop solar PV
- Battery storage
- L2 EV charging
- Heat pump water heater
- Air source heat pump

Basalt Vista Case Study

Project Goal: Demonstrate the ability for a distribution utility to control and dispatch Distributed Energy Resources (DERs) to provide value to the grid as well as to the individual consumer.

- Microgrid controllers coupled with DER
 - Flexible
 - VPP at All Levels
 - Feeder, Community or Individual Buildings
- ADMS: Simple Management and Visibility of DER
- Studied High Penetration of DERs
- Interoperability of different "Systems"
- Resilient Soft Microgrid

Distributed Controls of DERS

Advanced Distribution Management System (ADMS)

Fully integrated:

- Supervisory Control And Data Acquisition (SCADA)
- Outage Management System (OMS)
- Distribution Energy Resource Management System (DERMS)

Enhanced Situational Awareness for:

- Load Flow and State Estimation
- Vehicle Location
- · Switching Validation
- · Outage and Restoration Information from AMI
- Also runs applications, including:
 - CVR conservation voltage reduction
 - VVO volt/var optimization
 - FLISR fault location, isolation and service restoration

One easy-to-use graphical interface provided by Survalent (existing HCE partner)

Basalt Vista

Analog Points Watts 'n a Box at HCE Transformer watts 240.61 Voltage Y ph 36.02 Amps OFF Optimization Status -8.71 kW OFF Peak Time Mgmt

Power Factor

Phase Angle

176.54

2 Vars OFF Storm Watch

3 Day test at BV (November) – 4 homes

Simulations at NRELs ESIF -ADMS Test Bed

Developing Heatmaps – NRELs ADMS Test Bed

"Power+" Energy Storage Program

Pilot program in 2021 and 2022: 5 MW/15 MWh BTM storage
Combines DER Service Agreement & Distribution Flexibility tariff
Target consumer cost: \$30-\$60/month for 10 years

Initial install at HCE HQ avoided

12 interruptions/290 SAIDI minutes in Q4 2020 alone!

Tien Duong *U.S. Department of Energy*

Lithium-ion Batteries in Electric Drive Vehicles

Tien Q. Duong

Vehicle Technologies Office EERE, U.S. Department of Energy

Earth Day Special: Electrification, Batteries, Storage & Residential Efficiency

April 22nd, 2021

Battery Requirements & Design

- □ An automotive battery is considered to reach its end-of-life when it loses either 20% of its capacity or power. In general, most battery chemistries today are power-limited.
- ☐ To ensure that the battery lasts the expected life of the vehicle, battery performance requirements are defined at the end-of-life.
- ☐ Typical cycle life requirements for Hybrids and EVs are 300,000 and 1,000 cycles, respectively. These correspond to a lifetime requirement of more than 100,000 miles / 10 years.
- □ Batteries are generally designed for achieving optimal power/energy ratio (P/E) to meet the load for the specific application at minimum cost.
 - On a per kWh basis, thinner electrodes with larger P/E ratio cost more than thicker electrodes with smaller P/E ratio.

Powertrain Configurations: HEVs – Two Motor Design

Vehicle Specifications

	Unit	Value			
Model Year	-	2016			
Vehicle type	1	HEV			
EPA class	-	Midsize			
MSRP	\$	32345			
EPA FE (city/hwy)	MPG	43/39			
0-60mph	S	8.8			
Curb weight	kg	1650			
Powertrain architecture	-	Power-Split			
Featured tech.	-	Atkinson cycle			
Engine	ı	2L - 4cylinders, 104kW			
Engine tech.	-	iVCT, sequential			
		fuel injection,			
		Atkinson cycle,			
		hybrid start- stop system			
Battery	-	1.4 kWh			
Battery tech.	-	Lithium-ion			
Motor	-	Permanent Magnet Synchr			
		onous Motor 88kW			
Net power	kW	179			
Transmission	-	e-CVT			
Final drive		2.57			
C _d		0.316			
Frontal area	m ²	2.2575			

HEV – Ford Fusion Hybrid (2 Motor Design without transmission – most common)

Powertrain Configurations: PHEVs

Vehicle Specifications

	Unit	Value		
Model Year	-	2015		
Vehicle type	-	PHEV		
EPA class	-	Midsize		
MSRP	\$	25670		
EPA FE (city/hwy)	MPG	38 (combined)		
0-60mph	S	8.5		
Curb weight	kg	1750		
Powertrain architecture	-	Power-Split		
Featured tech.		Sequential fuel injection,		
	-	Atkinson cycle, DOHC,		
		hybrid start-stop system		
Engine	-	1.999L - 4 cylinders, 105kW		
Engine tech.	-	Atkinson cycle		
Battery	-	7.6 kWh		
Battery tech.	-	Lithium-ion battery pack		
Motor	-	Permanent magnet AC synchronous motor, 88kW		
Net power	kW	140		
Transmission	-	e-CVT		
Final drive		2.57		
C _d		0.325		
Frontal area	m ²	2.553		

PHEV – Ford C-MAX Energi Plug-in Hybrid

Powertrain Configurations: PHEVs (Range Extender)

Vehicle Specifications

•				
Unit	Value			
-	2016			
-	PHEV			
-	Subcompact			
\$	46250			
MPG	41 / 37			
S	7.5			
kg	1315			
-	Series			
-	_			
kW	25			
-	W2DKD6A			
-	22 kWh			
-	-			
kW	125			
kW	125			
-	DD			
	9.665			
	0.3			
m ²	2.3783			
	- - - - \$ MPG s kg - - - kW - - kW			

PHEV – BMW i3 with Range Extender (2014/2015/2016)

Powertrain Configurations: EVs

Vehicle Specifications

	Unit	Value
Model Year	1	2014/2015/2016
Vehicle type	ı	EV
EPA class	ı	Large
MSRP	\$	
EPA FE (city/hwy)	MPG	88/90
0-60mph	S	5.6
Curb weight	kg	2145
Powertrain architecture	-	Fixed Gear
Featured tech.	-	Rear-Wheel Drive, 3-Phase/4- Pole Electric Motor, Regenerative 4-Wheel Disc Brakes w/4-Wheel ABS, Front And Rear Vented Discs, Brake Assist, Hill Hold Control and Electric Parking Brake
Engine	-	-
Engine tech.	-	-
Battery	-	85 kWh
Battery tech.	-	Lithium Ion Traction Battery
Motor	-	AC induction motor, 285kW
Net power	kW	285
Transmission	-	DD
Final drive		9.73
C _d		0.246
Frontal area	m ²	2.406

EV - Tesla Model S85

Lithium-ion Batteries

(Why Li-ion?)

- □ Intercalation chemistry leads to very long cycle life (>1,000 cycles) due to invariant chemical transformation reaction →
- □ Example of a chemical transformation reaction →

After a stable passivation layer (solid electrolyte interphase) on the surface of the graphite electrode is formed.

$$Li_xC + Li_{(1-x)}MO_2 \xrightarrow[Charge]{Discharge} C + LiMO_2$$

$$Pb + PbO_2 + 2H_2SO_4 \xrightarrow{Discharge} 2PbSO_4 + 2H_2O$$

Lithium-ion Batteries

(Operation)

$$Li_{x}C + Li_{(1-x)}MO_{2} \xrightarrow{Discharge} C + LiMO_{2}$$

Variations of Lithium-ion Chemistries

- ☐ Multiple cathode & anode choices lead to several chemistries, with different open circuit voltages and related performances.
 - In general, systems with high open circuit voltage are preferred, followed by those with high specific capacity (mAh/g) and density (g/cm³).
 - There is no clear-cut preferred battery chemistry. It is dictated by specific application (a tradeoff between cost, cycle life, safety and total energy output).

□ Examples:

- The state-of-the art battery includes graphite/high nickel NMC (known as 622) battery systems operating at up to 4.4V – now deployed in vehicles.
- Electric buses prefer a graphite/LiFePO₄ system over other chemistries.
- For applications requiring very fast charges, the lithium titanate/NMC chemistry is preferred, primarily to avoid lithium plating.

Potential Uses: EV Batteries

- Electrical distribution in neighborhoods is not flexible
 - Single-phase, three-wire 120/240V distribution, via pole-mounted distribution transformers, limits vehicle-to-grid (V2G) applications.
- EV batteries could be designed to provide back-up power for homes during power outage
 - Typical EV batteries store ~80 kWh (~240+ mile range)
 - Most driving is for < 40 miles/day (using up 12 kWh)
 - The remaining 68 kWh of stored electrical energy could power most typical homes for about 2 days.
- ☐ Pair with a Solar System
 - EV batteries can store solar energy during the day and then supply power to the home at night.
- Peak Shaving
 - EV batteries can store energy at low-rate times and then supply power to home at high-rate times.

Energy Efficiency & Renewable Energy

Single-phase, three-wire, 120/240 V Distribution

Pole-mounted Distribution Transformer

Conclusions

EVs would achieve >20 million sales globally by 2030

Worldwide anticipated use applications of Li-ion batteries. Source: BNEF.

- ☐ Since its first entry into market (Toyota Prius HEV in 1997), electric drive vehicles have proven to be reliable, offer enjoyable driving experience with great fuel savings.
- ☐ Today, there are hundreds of brands and EV models available to choose from.
- ☐ With reduction in battery costs, EVs will become more popular.
 - Range anxiety is no longer a concern, with the Chevy Bolt and Tesla Model S achieving a range of 260 and up to 400 miles, respectively.
- ☐ Current battery cost is < \$170/kWh (battery pack).
 - Cost-parity with the internal combustion engine vehicles can be achieved when the battery cost falls to below \$100/kWh.

Thank you for your attention!

For more information, contact:

Tien Q. Duong

Manager, Battery Materials Research (BMR) Program, and VTO Battery500 Consortium

Battery R&D

Vehicle Technologies Office

Office of Energy Efficiency & Renewable Energy

U.S. Department of Energy

tien.duong@ee.doe.gov

(http://bmr.lbl.gov)

Closing Poll

• After today's call, what will you do?

- Consider implementing one or more of the ideas discussed
- Seek out additional information on one or more of the ideas
- Make no changes to your current approach
- Other (please explain)

Upcoming Events

Winning Solar Home - The DOE Solar Decathlon Build Challenge Winners

April 28, 1–2 p.m. E.T.

solardecathlon.gov/virtual_sessions.html

DOE Better Buildings Summit

May 17-20

betterbuildingssolutioncenter.energy.gov/summit

Explore the Residential Program Solution Center

Resources to help improve your program and reach energy efficiency targets:

- Handbooks explain why and how to implement specific stages of a program.
- Quick Answers provide answers and resources for common questions.
- Proven Practices posts include lessons learned, examples, and helpful tips from successful programs.
- Technology Solutions NEW! present resources on advanced technologies, HVAC & Heat Pump Water Heaters, including installation guidance, marketing strategies, & potential savings.

https://rpsc.energy.gov

Thank You!

Follow us to plug into the latest Better Buildings news and updates!

Better Buildings Twitter with #BBResNet

Better Buildings LinkedIn

Office of Energy Efficiency and Renewable Energy Facebook

Please send any follow-up questions or future call topic ideas to:

bbresidentialnetwork@ee.doe.gov

